If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-12k=99
We move all terms to the left:
k^2-12k-(99)=0
a = 1; b = -12; c = -99;
Δ = b2-4ac
Δ = -122-4·1·(-99)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{15}}{2*1}=\frac{12-6\sqrt{15}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{15}}{2*1}=\frac{12+6\sqrt{15}}{2} $
| −x^2−3x+7=0 | | -8x+12=5x-92 | | 44=5a+25 | | −x^2−x3+7=0 | | 2x+45+x-15=180 | | 5^(x-2)=32 | | 6x+3=2x+4+7x+8 | | G^2-5a+4=0 | | 9.7-x=4.21 | | x´2-3x=3x-9 | | 3(3x-4)=5+15 | | 4+n/3=11 | | 6611c=77 | | 4.21-x=2.8 | | 6+3u=-7 | | 2x+5.5=18 | | 6x-4.8=13.2 | | u/7+2.1=-9.1 | | 2(p+6)=16 | | 3x+11+10x-21=45 | | 3x+11+45=10x-21 | | 2z+2=12 | | z+20=22 | | 4(t+3)=12 | | 3y+11=23 | | F(x)=600(0.981)^3 | | 3x+11+45+10x-21=180 | | 2z+10=16 | | F(x)=15(1.03)^18 | | F(x)=15(1.03)^13 | | F(x)=15(1.03)^9 | | 12+2x=54 |